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Introduction 
 

Although rarely used in today’s world, analog computers can be extremely useful in 
solving mathematical operations and differential equations. In this lab, an analog computer was 
designed and built using a combination of circuits to solve an ordinary differential equation 
modeling glucose transport and metabolism within a cell. The intake and consumption of glucose 
by a cell was simplified into one differential equation. The circuit was carefully designed in a 
way that the output voltage corresponded to the solution of the differential equation. The 
electrical analog solution was then compared with the analytical calculus solution as well as a 
computational MATLAB solution.  
 
Methods and Materials 
 

Glucose transport into red blood cells was modeled by the following differential 
equation, where X₀ represents blood glucose and S₁ represents intracellular glucose. V₁ 
represents the rate of glucose transport into and out of the cell, so V₁ = K₁*X₀ - K₂*S₁, and V₂ 
represents that rate of conversion of glucose to lactate, so V₂ = K₃*S₁. 
 

dt
dS1 = V 1 − V 2 = K1 * X0 − K2 * S1 − K3 * S1  

 
The analog computer was designed using a box, circuit, and wiring diagram to solve this 

differential equation and measure S₁ directly over time. K₁*X₀ was treated and applied to the 
circuit as a constant voltage and the value of S₁ at time zero was set to be zero. 
 

The circuit was assembled on a breadboard according to the wiring diagram (Figures 4, 5, 
6 in Appendix). All resistors except the one indicated R₅, which had a value of 1MΩ, had a 
value of 10kΩ. One 353 and two 741 operational amplifiers were used. One 1µF capacitor was 
used in the… One switch was implemented to allow the initial S₁ value to be set, and two 
potentiometers were used to change the values of K₂ and K₃ between settings (Table 1). The 
circuit was grounded, connected to the +/- 25V voltage supplies, and connected to the +6V 
voltage supply with the negative terminal grounded to provide the constant K₁*X₀. The output 
was recorded using an oscilloscope.  
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 K₁*X₀ 
Input 

Voltage (V) 

Pot-1 
R₁ (Ω) 

Pot-1 
R₂ (Ω) 

Pot-2 
R₁ (Ω) 

Pot-2 
R₂ (Ω) 

K₂ Value 
(Ω) 

K₃ Value 
(Ω) 

Setting 1 1 4.963 4.866 4.965 4.825 0.495 0.493 

Setting 2 1 2.203 7.634 4.239 5.541 0.776 0.567 

Setting 3 2 2.203 7.634 4.239 5.541 0.776 0.567 

Table 1.​ Input voltage, potentiometer (Pot) settings, and calculated constans K₂ and K₃ 
corresponding with each setting of the analog computer. 
 
Results 
 

The circuit was designed using a large assumption about X₀ and S₁. Since our model 
only allows for a heavily simplified version of the problem we were tasked with, X₀ is assumed 
to be a constant value for all of time and S₁ is initially set to be zero. In reality, X₀ is 
representative of the blood glucose level, which can vary dramatically, and the intracellular 
glucose concentration  S₁ in human cells should never be 0. For our purposes, X₀ is not 
problematic to be left as a constant, but setting S₁ to be 0 is a fairly troublesome simplification. 
In trying to accurately model how glucose is transported over long time frames, both of the 
assumptions made would be an inappropriate. 

 
The circuit also utilizes a switch to implement an initial condition for S₁ into our 

equation. Because the switch is grounded, the initial condition is applied as voltage of 0V, 
according to the simplification described above, and therefore was given a value of 0 in our 
computed solutions as well. Prior to the switch being turned on, no voltage is allowed into the 
integrator portion of our circuit, and an output signal of 0V can be seen. After flipping the 
switch, the circuit begins integrating and the solution curve is created on the oscilloscope. 
Flipping the switch back to ground discharges the capacitor, and enables us to repeat the initial 
observation. 
 

After the switch allows voltage to travel to the integrator, it is important that appropriate 
values for R₅ and the capacitor are selected (Figure 5, Figure 6). This RC value relates to the 
ratio that the integrated voltage is multiplied by. Our RC value was intentionally selected so that 
it would be equal to 1, and the integrated voltage would then have a coefficient of 1. With an RC 
value not equal to 1, the voltage would have to be amplified by the final op-amp, which could 
introduce unwanted noise or gain in the final signal. 
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After the circuit was completed, it was run with the voltages and potentiometer values 
specified in Table 1. The results from each setting can be seen as the first image in Figures 1, 2, 
and 3 respectively. These settings were chosen to compare how changing the various variables in 
the equation would impact the output signal. The second image in each Figure below displays the 
analytical and computational solutions, as plotted in MATLAB. The analytical solution was 
found by hand, using a standard solving method. The computational solution was created by 
MATLAB using the ode45 function. The analog computer results were very similar to both the 
analytical and computational solution, which were nearly identical, for all three settings. Figure 1 
shows the analog computer output voltage for setting one approaching slightly greater than 1V at 
at steady state, which is similar to the analytical and computational solutions that approach an 
intracellular glucose concentration of about 1 at steady state. Figures 2 and 3 show similar 
results, with the most noticeable difference between the analog computer and the analytical and 
computational solutions being the slight variation in the steady state reached. In all three Figures, 
the analog computer reached a higher steady state value than the computational solution plots. 
This could be due to error caused by the internal components, as the resistors, potentiometers, 
and a capacitor always have some error associated with them. 

 

 
Figure 1. ​Setting one calculated by the analog computer, computationally, and analytically. Note 

the difference in the final steady state level. This can be seen in Figures 2 and 3 as well. 
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Figure 2.​ Setting two calculated by the analog computer, computationally, and analytically. 

 

  
Figure 3. ​Setting three calculated by the analog computer, computationally, and analytically. 

 
Overall, our results make sense when considering the question that we originally set out 

to answer, and with the given simplifications. The differential equation listed above shows that 
over time, S₁ approaches V₁ - V₂. Considering the equation, if V₂ is greater than V₁, then the 
S₁ would appear similar to a damped, oscillating pattern. It would decrease, and then eventually 
approach 0, which would then make V₂ less than V₁, causing an increase again until equilibrium 
is reached. However, taking into consideration the system as a whole, V₂ cannot, at least 
initially, be greater than V₁, as S₁ is set to 0 initially. Because of this, we only see the steady 
increase of S₁ until steady state is reached, as there is no oscillation in our model. The analog 
computer generated plots and the analytical and computational solutions observed are consistent 
with this analysis of the given differential equation. 

 
As briefly described above, X​0​ represents blood glucose concentration in humans in our 

model. This level varies between individuals and fluctuates with food intake and physical 
activities. If no food is consumed for eight hours, the normal blood glucose concentration lies 
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between 70 to 99 mg/dL​1​.  Within two hours of food consumption, the normal blood glucose 
concentration increases up to 140 mg/dL. For the model used in this lab, X​0​ was assumed to be 
constant throughout and the intracellular glucose concentration (S​1​) was set to zero initially. 
These assumptions were made to simplify the circuitry of the analog computer. If X​0​ varied, then 
an extra circuit would be needed to vary the input. In addition, capacitors would needed to be 
pre-charged to emulate a non-zero initial condition. With that said, the X​0 ​assumption was 
reasonable as most of the time, the human blood glucose stays constant as energy is pulled out of 
storage to maintain a baseline blood glucose concentration. The S​1​ assumption was less 
reasonable as the intracellular glucose concentration never reaches zero in a human body. 
However, the assumption was needed to create a simple enough model that can be built in the 
scope of this lab.  

 
Conclusions 
 

This lab was very insightful in learning about analog computer circuits and solving 
differential equations. Specifically, the group learned to model a biological process with a simple 
differential equation.  In addition, the group was introduced to illustrating various circuit 
diagrams and also learned how different op-amps and potentiometers work. These skills are 
extremely applicable since bioengineers are often tasked with using models, circuitry and 
mathematics to solve biological problems in team settings. Furthermore, this lab allowed the 
group to apply the knowledge learned in the Systems and Control course regarding feedback in 
the context of circuitry and differential equations. Although this exercise simplified a real 
biological process, the critical thinking and technical skills acquired by the group set a solid 
foundation for future applications in bioengineering.   
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Appendix 
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Circuit Figures 

 
Figure 4. ​Final analog computer circuit implementation. A more clear depiction of the circuit 
can be seen in Figures 5 and 6. 
 

 
Figure 5. ​Final group circuit diagram used for assembly. Resistors and capacitor are labeled (Rₓ 
or C) as well as the voltage coming from various paths (eₓ). These voltages were used to 
calculate the proper values for the resistors and capacitor. 
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Figure 6. ​Final wiring diagram used for assembly. Values for various resistors and capacitors are 
included. V₀ and S₀​ ​label the points to input voltage and measure voltage, respectively. 

 
Figure 7.​ Analytical solution hand-written calculations solving for S​1 ​as a function of time. 
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MATLAB Code 
 
clear all; close all; clc; 
%Define variables 
k1 = 1; 
%k2 = 0.495; 
k2 = 0.776; 
%k3 = 0.493; 
k3 = 0.567; 
%X0 = 1; 
X0 = 2; 
  
%Analytical Solution 
tspan = 0:0.1:10; 
S1anal = (k1*X0/(k2+k3))*(1-exp(-(k2+k3).*tspan)); 
  
plot(tspan,S1anal) 
hold on 
  
%Computational Solution 
y0 = 0; 
[t,S1comp] = ode45(@fun1, tspan, y0); 
plot(t,S1comp,'ko') 
legend('analytical','computational') 
title('Analytical and Computational Solutions to the Differential Equation Model') 
xlabel('Time (s)') 
ylabel('S1 Glucose Concentration') 
hold off 
  
function dS1dt = fun1(t,S1) 
%function that models the differential equation 
k1 = 1; 
%k2 = 0.495; 
k2 = 0.776; 
%k3 = 0.493; 
k3 = 0.567; 
%X0 = 1; 
X0 = 2;  
dS1dt = k1*X0 - k2*S1 - k3*S1; 
end 
 

 


